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Abstract
We propose a new class of algorithms for min-
imizing or maximizing functions of parametric
probabilistic models. These new algorithms are
natural gradient algorithms that leverage more
information than prior methods by using a new
metric tensor in place of the commonly used
Fisher information matrix. This new metric ten-
sor is derived by computing directions of steep-
est ascent where the distance between distribu-
tions is measured using an approximation of en-
ergy distance (as opposed to Kullback-Leibler di-
vergence, which produces the Fisher information
matrix), and so we refer to our new ascent direc-
tion as the energetic natural gradient.

1. Introduction
In this paper we consider a fundamental problem within
machine learning research: minimizing or maximizing
functions of parametric probabilistic models (also called
parametrized probability distributions). This problem lies
at the heart of all three branches of machine learning. In
unsupervised learning, for instance, it arises in the maxi-
mization step of the expectation-maximization algorithm.
In supervised learning, nearly every modern algorithm fits
a parametric model by minimizing a loss function over can-
didate models. In reinforcement learning the goal is to find
a parametric probabilistic model (a stochastic policy) that
maximizes an objective function (expected return).

Although sometimes the parameter vector that minimizes
or maximizes a function of a parametric model can be
solved for analytically, the use of gradient-based algo-
rithms is still common. When using gradient methods we
usually know how the parametric model is parametrized,
e.g., that the parameters encode the mean and standard de-
viation of a normal distribution. Natural gradient descent
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using the Fisher information matrix (FIM) is one popular
extension of the ordinary gradient descent algorithm that
leverages this additional information to improve data effi-
ciency (to speed up convergence).

Often we know more than just how we parametrized the
parametric model: we also know what the parametric
model is a distribution over. This additional knowledge is
not leveraged by gradient descent or natural gradient de-
scent using the FIM. In this paper we propose a new
class of natural gradient algorithms that provide more
informed update directions by leveraging knowledge of
both how the parametric probabilistic model is param-
eterized and what it is a distribution over.

We derive our method by computing directions of steepest
ascent of the objective function when the distances between
probability distributions are measured using an approxima-
tion of energy distance. The resulting class of algorithms
are natural gradient algorithms that use a new metric tensor
that we call the energy information matrix (EIM). We there-
fore call our method energetic natural gradient descent.

2. Setting
Let θ ∈ Rn be the parameters of a parametric probabilis-
tic model (PPM), p(θ). That is, for each θ ∈ Rn, p(θ) is a
probability distribution. Let Ω be the set of outcomes that
p(θ) is a distribution over, and let p(ω|θ) denote the proba-
bility (or probability density) of ω under p(θ). Let f be an
objective function that takes as input a probability distribu-
tion and produces as output a real number. We assume that
f ◦ p : Rn → R is a continuous function, where ◦ denotes
function composition, i.e., (f ◦p)(θ) := f(p(θ)). Our goal
is to find a (local) minimum of f ◦ p.

For example, we might wish to find the normal distribution
that maximizes the log-likelihood of some observed data.
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In this case we might select n = 2 so that θ = (θ1,θ2),
and let p(θ) denote a normal distribution with mean θ1 and
standard deviation θ2. We could then define f(p(θ)) to
be negative the log-likelihood of the data given the nor-
mal distribution p(θ), since minimizing negative the log-
likelihood corresponds to maximizing the log-likelihood.

3. Background
3.1. The Space of Probability Distributions

We assume that the space of probability distributions rep-
resentable by p is a smooth semi-Riemannian manifold. In
the remainder of this section we present an intuitive de-
scription of what this means.

Consider how we can represent the space of probability dis-
tributions that is spanned by p. One way to represent this
space is by viewing it as Rn, where each point, θ ∈ Rn,
corresponds to the probability distribution p(θ). However,
this set of probability distributions is more than just Rn—
each point has meaning—and so this set has additional
structure. Specifically, we can define a notion of distance
between different probability distributions.

We do this by defining an inner product, 〈·, ·〉θ, that de-
scribes the topology of the set around the point θ, and
which changes smoothly with θ. We define this inner prod-
uct in terms of a positive semidefinite n× n matrix, G(θ).
Selecting different definitions for G(θ) will correspond to
different notions of distance between probability distribu-
tions. Specifically, we define: 〈v,w〉θ := vᵀG(θ)w,
and we call G the metric tensor. The vector space re-
sulting from the use of this inner product is called a semi-
Riemannian manifold. The distance between two points on
the manifold, θ and θ + ∆, which are close to each other,
will be approximately

√
〈∆,∆〉θ =

√
∆ᵀG(θ)∆. This

is only approximately the distance because G(θ) is a local
description of distance—it describes how distances should
be measured around θ. Measuring the distance between θ
and θ + ∆ exactly would require considering G(θ′) for θ′

between θ and θ + ∆.

Notice that if we define G(θ) = In for all θ, where
In is the n × n identity matrix, then we are declaring
the space of probability distributions to be Euclidean in
our parametrization. That is, we assume that the distance
between two probability distributions p(θ1) and p(θ2) is√

(θ1 − θ2)ᵀ(θ1 − θ2)—the Euclidean distance between
θ1 and θ2.

3.2. Steepest Descent Methods

One way to find a local minimum of f ◦ p is to select
some initial probability distribution, q, compute the direc-
tion of change to q that most rapidly decreases f(q), and

𝑞

𝜖

𝑞′

Figure 1: Depiction of the gradient.

then move q a small amount in this direction:

q ← q − α∇f(q), (1)

where α ∈ R is a small positive step size and ∇f(q) is the
gradient of f at q—the direction of change to q that most
rapidly increases f(q).

Consider in more detail what the gradient—the direction
of steepest ascent—really is. Figure 1 depicts the idea be-
hind the gradient. The background denotes the space of
all probability distributions, where q is a point (depicted in
the middle). The darkness of the background denotes the
value of f(q)—it is larger for darker regions and smaller
for lighter regions. Consider the points on a circle around q
with radius ε, where ε is tiny—infinitesimal. These are all
of the points q + ε∆ where ‖∆‖ = 1. Since ε is small, and
f is continuous, Figure 1 is zoomed in to the point where f
appears to be a planar function. Let q′ be the point on the
circle where f takes the largest value. The direction of the
gradient is q′ − q, and is depicted by the dashed line.

Notice that the direction of the gradient depends on how we
measure distances in the space of probability distributions
since we require ‖∆‖ = 1. This norm, ‖·‖, encodes our
notion of distance in probability space (locally, around q).
From the point of view of one notion of distance, a differ-
ent notion of distance will produce an oblong ellipse rather
than a circle. So, different notions of distance can cause
the gradient to point in different directions in the space of
probability distributions.

In (1) we are performing steepest descent in the space of
probability distributions—∇f(q) is a direction in the space
of probability distributions. Since each θ corresponds to a
probability distribution, we can write this update in terms
of θ. This gives our formal definition of steepest descent
methods: they compute a sequence, (θi)

∞
i=0, where θ0 is

chosen arbitrarily and

θi+1 = θi − αi∇̃(f ◦ p)(θi), (2)

where (αi)
∞
i=0 is a sequence of step sizes and ∇̃(f ◦ p)(θ)

is called the natural gradient of f at θ. The natural gradi-
ent is merely the direction of change to θ that causes p(θ)
to move in the direction of the gradient of f (which is a
direction in the space of probability distributions).

In our setting where distances around p(θ) can be measured
using the norm ‖∆‖ =

√
∆ᵀG(θ)∆, the natural gradient
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has the closed form (Amari, 1998; Thomas, 2014):

∇̃(f ◦ p)(θi) := G(θi)
+ ∂(f ◦ p)(θi)

∂θi
,

whereG(θ)+ denotes the Moore-Penrose pseudoinverse of
G(θ) and where here and after we write ∂(f ◦ p)(θi)/∂θi

as shorthand for ∂(f◦p)(θ)
∂θ |θ=θi

. Also, for the optimization
of PPMs, the method of steepest descent is often called nat-
ural gradient descent.1

3.3. Ordinary Gradient Descent

In order to apply the descent algorithm in (2), we must se-
lect a G that reflects how we wish to measure distances
between probability distributions. One way to do this is
to select a G that is simple to compute, but which might
not produce a particularly useful notion of distance: let
G(θ) = In for all θ. As discussed before, this means that
we are defining the distance between two probability dis-
tributions, p(θ1) and p(θ2), to be the Euclidean distance
between their parameters:

√
(θ1 − θ2)ᵀ(θ1 − θ2).

Although this metric tensor is trivial to compute, it has a
significant drawback: it means that the way that we mea-
sure the distance between two probability distributions de-
pends on how we parametrize distributions. Consider what
would happen if we constructed two PPMs that span the
exact same set of probability distributions. For example, if
n = 2 and θ = (θ1,θ2), we might have p(θ) be the normal
distribution with mean θ1 and standard deviation |θ2|. We
can then construct a second parametric model, q(φ), where
φ = (φ1,φ2) ∈ R2 and q(φ) is the normal distribution
with mean φ1 and variance φ2.

Now consider two different probability distributions, both
with zero mean, but one with variance equal to one and
the other with variance equal to four. These correspond to
p([0, 1]) = q([0, 1]) and p([0, 2]) = q([0, 4]). Under the
parametrization used by p, using G(θ) = In means that
the distance between p([0, 1]) and p([0, 2]) is 1.2 However,
under the parameterization used by q, using G(θ) = In
means that the distance between the same distributions,
q([0, 1]) and q([0, 4]) is 3. It is straightforward to verify
that changes to θ1 and φ1 are treated equivalently by the
notions of distance induced by p and q, and so one notion
of distance is not merely an affine rescaling of the other.
So, using this metric tensor, different parametrizations of

1Technically the natural gradient (Amari, 1998) requires G(θ)
to be positive definite for all θ, while the generalized natural gra-
dient (Thomas, 2014) only requires G(θ) to be positive semidef-
inite for all θ. Hereafter we use the generalized natural gradient
but refer to it as the natural gradient.

2Since G(θ) does not depend on θ, we can compute the dis-
tance between two vectors v and w as

√
(v −w)ᵀG(θ)(v −w)

(this is not just an approximation).

the PPM induce different notions of distance between prob-
ability distributions.

Notice that different notions of distance between probabil-
ity distributions can result in different directions of steep-
est ascent. Using G(θ) = In means that the choice of
parametrization can change our notion of distance and thus
the direction of steepest ascent. Some parametrizations of
the PPM might result in a reasonable notion of distance,
which in turn results in a reasonable direction of steepest
ascent and the sequence of p(θi) produced by the steep-
est descent method taking a short path to a local minimum.
Other parametrizations might result in an absurd notion of
distance, thereby producing ascent directions that result in
sequences of p(θi) that form a long and curving path to a
local minimum.

Using G(θ) = In, the closed form equation for the natural
gradient becomes particularly simple:

∇̃(f ◦ p)(θ) =
∂(f ◦ p)(θ)

∂θ
.

We refer to this direction as the ordinary gradient, since
it is the gradient that you would get if you used ordinary
(non-manifold) calculus to compute the direction of steep-
est ascent of f ◦ p at θ. We also refer to natural gradient
descent using this metric tensor as ordinary gradient de-
scent. Notice that ordinary gradient descent is a special
case of natural gradient descent.

3.4. Fisher Natural Gradient Descent

Rather than allow our choice of parametrization to induce
a notion of distance over probability distributions, we can
explicitly define a reasonable notion of distance. One popu-
lar method for quantifying the similarity of probability dis-
tributions is the Kullback-Leibler divergence (KLD). The
KLD of two probability distributions, p(θ) and p(θ + ∆)
is given by (for finite Ω):

DKL (p(θ)‖p(θ + ∆)) :=
∑
ω∈Ω

p(ω|θ) ln

(
p(ω|θ)

p(ω|θ + ∆)

)
.

Pinsker’s inequality relates the square root of the KLD
to a distance metric (Tsybakov, 2009, Lemma 2.5),
which suggests that we might treat approximations of the
KLD as notions of squared distance (as opposed to dis-
tance). So, we will use an approximation, 1

2∆ᵀG(θ)∆,
of DKL(p(θ)‖p(θ + ∆)) as (half) the squared distance be-
tween p(θ) and p(θ + ∆).

Let the Fisher information matrix (FIM), F , be defined as:

F (θ) := EX∼p(·|θ)

[
∂ ln p(X|θ)

∂θ

∂ ln p(X|θ)

∂θ

ᵀ]
,

which is guaranteed to be positive semidefinite (although
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not necessarily positive definite). In Appendix A we re-
produce the known result that 1

2∆ᵀF (θ)∆ is a second or-
der Taylor approximation ofDKL (p(θ)‖p(θ + ∆)), which
suggests using G = F (ignoring the scalar, 1/2, since it
corresponds to using a different step size). Using a second
order Taylor approximation of KLD is reasonable because
G(θ) is only used to define distances locally around θ (and
so higher order terms have little impact). We refer to the
natural gradient and natural gradient descent using G = F
as the Fisher natural gradient and Fisher natural gradient
descent respectively.

Notice that the FIM depends only on the PPM, not on the
objective function, f , which is desirable when f is not
known but its gradient is known or can be approximated.
Furthermore, it has been shown that the Fisher natural gra-
dient is a covariant update direction—its direction in the
space of probability distributions does not depend on the
parametrization of the PPM. Intuitively, this suggests that
the Fisher natural gradient automatically corrects for how
a PPM is parametrized. Both of our parametrizations of
normal distributions, p and q in earlier examples, will pro-
duce the same sequence of probability distributions if used
with Fisher natural gradient descent (and an infinitesimal
step size, or a step size of fixed length, where length is
measured over the semi-Riemannian manifold of probabil-
ity distributions).

Often the term “natural gradient descent” is used specif-
ically to denote Fisher natural gradient descent. This is
likely due to its popularity, which in turn is likely due to
the wealth of both theoretical and empirical results it has
accrued. For example, it is Fisher efficient (Amari & Dou-
glas, 1998), convergent given only mild assumptions be-
yond those required by ordinary gradient descent (Thomas,
2014), related to the mirror descent algorithm (Thomas
et al., 2013; Raskutti & Mukherjee, 2015), and can be ef-
ficiently estimated when using deep neural networks (Des-
jardins et al., 2015). Empirically it has achieved notable
successes for adaptive robotic control (Peters & Schaal,
2008) and stochastic variational inference in topic models
(Hoffman et al., 2013).

4. Energetic Natural Gradient Descent
While the Fisher natural gradient corrects for the
parametrization of the PPM, it does not depend on f in
any way. This is beneficial because often f is not known
and can only be sampled, while p (and thus the FIM)
is known. However, often some information about f is
known. Specifically, usually it is known what set, Ω, called
the sample space, p(θ) is a distribution over. Often there
may be some structure to this space—we may have a dis-
tance metric, d : Ω × Ω → R. We propose a new natural
gradient that leverages this additional information.

Consider a simple toy example where we try to find the
distribution, p(θ), over daily exercises, Ω = {ω1, ω2, ω3},
that minimizes the expected cost of health insurance as pre-
dicted by some complicated model, f . We assume that f
is unknown, but that we can produce estimates of the gra-
dient of f at any point. Let ω1 denote a half hour of walk-
ing outdoors, ω2 denote a half hour of walking indoors,
and ω3 denote a half hour of climbing the exterior of tall
buildings without safety equipment. Even without knowing
more about f , we know that there is some likely structure to
the space Ω: ω1 and ω2 are quite similar to each other, and
quite different from ω3. For the remainder of this section,
let p(θ) := [Pr(ω1|θ),Pr(ω2|θ),Pr(ω3|θ)]ᵀ.

Consider what happens if we use KLD to measure the
squared distance between outcomes for this example. Let
p(θ1) = [0.3, 0.3, 0.3]ᵀ, p(θ2) = [0.2, 0.4, 0.3]ᵀ, and
p(θ3) = [0.2, 0.3, 0.4]ᵀ. Notice that DKL(p(θ1)‖p(θ2)) =
DKL(p(θ1)‖p(θ3)) ≈ 0.36. That is, moving probability
mass from walking outdoors to walking indoors incurs the
same (squared) distance as moving probability mass from
walking outdoors to climbing tall buildings without safety
equipment. Intuitively, this does not respect what we know
about Ω. Because of its use of the KLD, the Fisher natural
gradient also ignores this known structure of Ω.

We therefore propose using a notion of distance over prob-
ability distributions that, unlike KLD, captures our prior
knowledge about the structure of the sample space, Ω. We
propose using the energy distance, which is sometimes
called the maximum mean discrepancy. Let dp(θ) be a dis-
tance metric over Ω, then the squared energy distance be-
tween p(θ1) and p(θ2) is given by:

DE(p(θ1), p(θ2))2 :=

E[2dp(θ1)(X,Y )− dp(θ1)(X,X
′)− dp(θ1)(Y, Y

′)],

where X ∼ p(θ1), X ′ ∼ p(θ1), Y ∼ p(θ2), and Y ′ ∼
p(θ2). Notice that for generality we let dp(θ) depend on
p(θ)—this means that the notion of distance between out-
comes may depend on the current distribution over out-
comes.

As with the KLD, we use a second order Taylor expansion
to construct an estimate of the squared energy distance that
is in the form that we want. Specifically, we will show that

DE(p(θ), p(θ + ∆))2 ≈ ∆ᵀE(θ)∆, (3)

where

E(θ) :=−
∑
ω1∈Ω

∑
ω2∈Ω

dp(θ)(ω1, ω2)p(ω1|θ)p(ω2|θ)

× ∂ ln p(ω1|θ)

∂θ

∂ ln p(ω2|θ)

∂θ

ᵀ
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=−
∑
ω1∈Ω

∑
ω2∈Ω

dp(θ)(ω1, ω2)
∂p(ω1|θ)

∂θ

∂p(ω2|θ)
∂θ

ᵀ

=−EX∼p(·|θ)
Y∼p(·|θ)

[
dp(θ)(X,Y )

∂ ln p(X|θ)
∂θ

∂ ln p(Y |θ)
∂θ

ᵀ]
,

where × denotes scalar multiplication split across multiple
lines. We call E(θ) the energetic information matrix (EIM)
at θ, because we show later that it is a generalization of the
FIM.

First, we show that (3) is a second order Taylor approxima-
tion. Although here we skip many algebraic and calculus
steps, a step-by-step derivation of this fact is provided in
Appendix B. For brevity, let gq(θ) := DE(q, p(θ))2 be the
squared energy distance between q and p(θ). The Jacobian
and Hessian of gq at θ are:

∂gq(θ)

∂θ
=2
∑

ω1∈Ω,ω2∈Ω

(q(ω1)− p(ω1|θ)) dp(θ)(ω1, ω2)
∂p(ω2|θ)

∂θ

∂2gq(θ)

∂θ2 =2
∑

ω1∈Ω,ω2∈Ω

(q(ω1)− p(ω1|θ)) dp(θ)(ω1, ω2)
∂2p(ω2|θ)

∂θ2

− 2
∑

ω1∈Ω,ω2∈Ω

dp(θ)(ω1, ω2)
∂p(ω1|θ)

∂θ

∂p(ω2|θ)

∂θ

ᵀ

.

A second order Taylor approximation of gp(θ)(θ + ∆)
around θ is defined as

gp(θ)(θ + ∆)
Taylor2≈ gp(θ)(θ) + ∆ᵀ ∂gp(θ)(θ)

∂θ

+
1

2
∆ᵀ ∂

2gp(θ)(θ)

∂θ2 ∆,

which, after substituting in our equations for the Jacobian
and Hessian and performing algebraic manipulations, is:

gp(θ)(θ + ∆)
Taylor2≈ ∆ᵀE(θ)∆,

which by the definition of g is the desired result, (3).

We now have our new natural gradient algorithm, energetic
natural gradient descent, which is natural gradient descent
using G = E . Notice that computing E requires knowledge
of p and d, but not necessarily f . This means that ener-
getic natural gradient descent, like Fisher natural gradient
descent, is applicable when f is not known, but where the
gradient of f can be estimated.

5. Illustrative Example
In this section we present an example that illustrates the
potential benefits of the energetic natural gradient over the
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Figure 2: Contour plot of f ◦ p for the illustrative example.

Fisher natural gradient and ordinary gradient. Let Ω =
{ω1, ω2, ω3}, θ = (θ1,θ2)ᵀ ∈ R2,

p(θ) =

p(ω1|θ)
p(ω2|θ)
p(ω3|θ)

 =

 θ1

θ2

1− θ1 − θ2

 ,
where θ1 ≥ 0, θ2 ≥ 0, and θ1 + θ2 ≤ 1 to ensure that
p(θ) is a probability distribution. Let

f(p(θ)) := −p(θ)ᵀ

 1 0.5 0
0.5 1 0
0 0 1

 p(θ).

Figure 2 depicts f ◦ p. Consider what the distance metric,
dp(θ), over Ω, might be in this case. The matrix in the defi-
nition of f suggests a setting where ω1 and ω2 are similar,
but ω3 is quite different from ω1 and ω2 (like in our health
insurance example). We might therefore choose the dis-
tance between ω1 and ω2 to be some constant in [0, 1), e.g.,
0.7, and the distance between ω3 and either of the other
two events to be 1.0. Let dp(θ) be described as a 3× 3 ma-
trix where the element in the ith row and jth column corre-
sponds to the distance between ωi and ωj , and where dp(θ)

is the same for all θ:

dp(θ) =

 0 0.7 1
0.7 0 1
1 1 0

 .
Figures 3a, 3b, and 3c show the (negative) ordinary gradi-
ent, Fisher natural gradient, and energetic natural gradient
of f ◦ p given these definitions. Notice that at most points
the ordinary gradient does not point towards the global op-
timum near θ = (0.3, 0.3)ᵀ. This is particularly notice-
able when one parameter is near one. The Fisher natural
gradient corrects for how p is parametrized, and this helps
a little. For example, if either parameter is near one, the
natural gradient points much closer to the global optimum
than the ordinary gradient. However, the natural gradient
does not uniformly point towards the global optimum. The
energetic natural gradient leverages our knowledge about
how p is parametrized as well as prior knowledge about a
reasonable d to improve upon the Fisher natural gradient
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(a) Ordinary gradient.
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(b) Fisher natural gradient.
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(c) Energetic natural gradient.
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(d) Newton’s method.

Figure 3: Different ascent directions of the illustrative f ◦ p.

and ordinary gradient—at every point it points close to the
global optimum.

Although the energetic natural gradient is an improvement
upon the ordinary gradient and Fisher natural gradient in
this example, it is not ideal—it does not point exactly
towards the global optimum from all points. This hap-
pens because we only used intuitive knowledge about f—
knowledge about how distances over Ω might be measured.
If, however, we knew exactly what f was when selecting
dp(θ), then we might have chosen dp(θ)(ω1, ω2) = 0.5,
since that causes E(θ) to be the Hessian of f ◦ p, and thus
the energetic natural gradient to be the update direction of
Newton’s method, which is depicted in Figure 3d.

This highlights one setting where one should not use the
energetic natural gradient: when the Hessian of f ◦ p is
known. In this setting, using Newton’s method will gen-
erally be preferable to energetic natural gradient descent.
However, if the Hessian is not known, then one may still ap-
ply energetic natural gradient descent to get improvements
over Fisher natural gradient descent as shown by this exam-
ple. We view Figures 3a through 3d as being a sequence of
update directions that leverage (but also require to be avail-
able) an increasing amount of knowledge about the opti-
mization problem at hand. To the left we have methods
that require little knowledge about f or p, and left of Fig-
ure 3a we might place optimization methods like CMA-ES
(Hansen, 2006) that require no knowledge of the gradient.
On the right we have methods that require more knowl-
edge about f and p, and to the right of Figure 3d we might
place analytic solutions to the optimization problem. One
argument in favor of the energetic natural gradient is that
it leverages knowledge that is typically available when ap-
plying the Fisher natural gradient.

6. How to Select d
In the previous sections we derived the energetic natural
gradient assuming that a distance metric, d, over outcomes,
Ω, is available. An obvious question is: how should d be
selected for other problems? This remains an open prob-
lem. However, although we have yet to find a satisfactory
answer to the question of how to define an optimal d in gen-

eral, our example from the previous section suggests that
even a d chosen based on intuition can provide benefits over
the Fisher natural gradient, which ignores distances over
events altogether. In Section 8 we provide another exam-
ple that supports this claim in the context of reinforcement
learning.

Moreover, the analysis in the next section shows that d can
be chosen to make energetic natural gradients identical to
Fisher natural gradients, and so there always exists a d that
causes energetic natural gradient descent to perform at least
as well as Fisher natural gradient descent.

7. Theoretical Analysis of Energetic Gradient
Descent

In the previous sections we gave intuitive motivation for
and derived the energetic natural gradient. We then dis-
cussed how the distance metrics, d, could be selected. In
this section we provide a first theoretical analysis of the
EIM, energetic natural gradient, and energetic natural gra-
dient descent.

7.1. Positive definiteness of EIM

For the energetic natural gradient to be an ascent direc-
tion, E(θ) must be positive definite. Less restrictively, for
the energetic natural gradient to not be a descent direction,
E(θ) must be positive semidefinite. The following theo-
rem establishes sufficient conditions for E(θ) to be posi-
tive semidefinite. Specifically, we show that if d is a con-
ditionally negative definite distance, then E(θ) is positive
semidefinite, which in turn implies that the energetic natu-
ral gradient will not be a descent direction.3

Theorem 1. If |Ω| <∞ and dp(θ) is conditionally negative
semidefinite, then E(θ) is positive semidefinite.

Proof. See Appendix C.

3Recall that when minimizing f ◦ p, we move θ in the di-
rection of the negative energetic natural gradient, so we want the
energetic natural gradient to be an ascent direction (or at least not
a descent direction) so that the negative energetic natural gradient
is a descent direction (or at least not an ascent direction).
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In Appendix D we provide conditions to ensure that a dp(θ)

is conditionally negative semidefinite and give an example
of a distance metric, dp(θ), that is not conditionally negative
semidefinite.

7.2. FIM is a special case of EIM

The following theorem shows that the FIM is a special case
of the EIM—there is a choice of d that causes the two to be
equivalent. Let 1(·) denote the indicator function.
Theorem 2. E(θ) = F (θ) if |Ω| <∞ and

dp(θ)(ω1, ω2) := 1(ω1 6=ω2)

(
1

2p(ω1|θ)
+

1

2p(ω2|θ)

)
.

Proof. See Appendix E.

The d that causes FIM and EIM to be equivalent provides
insight into why Fisher natural gradient descent tends to
converge slowly to distributions with very low probabili-
ties associated with some outcome, ω. Since 1/p(ω|θ) is
very large in this case, FIM is inducing a notion of distance
over outcomes such that changing p(ω|θ) incurs a large
distance. This will cause the natural gradient to favor up-
date directions that change the probabilities of other events
while leaving the probability of ω relatively unchanged,
which means that the probability of ω will only slowly ap-
proach its ideal value.

7.3. The Energetic Natural Gradient is a Covariant
Update Direction

Recall that when using ordinary gradient descent the choice
of parametrization impacts the notion of distance over
probability distributions. This means that the path that or-
dinary gradient descent takes through the space of proba-
bility distributions depends on the parametrization of the
PPM. In general, this is undesirable. We prefer methods
that are robust to different parametrizations—methods that
ensure that the path through the space of probability distri-
butions does not depend on how we parametrize the PPM.
Such methods are called covariant. A formal definition of
what it means for an update direction to be covariant (there
are a few minor technicalities) is provided in Appendix F.

Below we present a theorem which establishes that the en-
ergetic natural gradient is a covariant update direction.
Theorem 3. The energetic natural gradient is a covariant
update direction.

Proof. See Appendix F.

7.4. Relation to Natural Gradient

The obvious statement that energetic natural gradient de-
scent is a natural gradient descent algorithm has important

ramifications. Perhaps most importantly, energetic natural
gradient descent therefore inherits the theoretical proper-
ties afforded to all natural gradient algorithms. For exam-
ple, conditions for the convergence of natural gradient al-
gorithms (and thus energetic natural gradient descent) can
be found in the work of Thomas (2014, Theorems 2, 3, 4,
and 5).

An equivalence between natural gradient descent and mir-
ror descent, a popular smooth, constrained, convex op-
timization algorithm (Nemirovski & Yudin, 1983; Beck
& Teboulle, 2003), was recently established (Raskutti &
Mukherjee, 2015). When this equivalence holds (it only
holds in certain settings), natural gradient algorithms, in-
cluding energetic natural gradient descent, inherit the theo-
retical properties of mirror descent. One important ramifi-
cation of this is that energetic natural gradient methods can
be extended to allow for constraints on the set of parameter
vectors, θ, that are allowed (Thomas et al., 2013).

8. Example Application: Reinforcement
Learning

In this section we assume that the reader is familiar with re-
inforcement learning (Sutton & Barto, 1998, RL) and eva-
lute the performance of energetic gradient descent for an
RL application. Our experiments provide empirical evi-
dence that an agent optimizing its behavior via energetic
natural gradient descent can execute more efficient update
steps than one using the ordinary gradient or Fisher natu-
ral gradient. In particular, we show that, for a wide range
of initial solutions (initial policy parameters), the energetic
natural gradient consistently points towards better solutions
than the ordinary gradient and Fisher natural gradient.

This presents an interesting question: what experiment
would provide evidence that one update direction is supe-
rior to another? If we create algorithms that try to effi-
ciently estimate each update direction from data and show
standard learning curves, then our results would conflate
the data-efficiency of a particular algorithm’s gradient esti-
mates with the quality of the update direction—i.e., is the
energetic natural gradient really a better update direction,
or does it just require less data before estimates of it be-
come ascent directions? Similarly, if we use an adaptive
step size or a fixed step size, then our algorithms would
conflate the quality of an update direction with the compat-
ibility of the selected (adaptive) step size.

Because of these complications, we chose to estimate each
update direction as accurately as possible (using large
amounts of data) and to use line searches to find the op-
timal step size for each method. We then compare the per-
formance of the resulting policy after a single update. If we
produced standard learning curves, only the first step would
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Figure 4: Comparison of updates for mountain car.

provide a meaningful comparison—each gradient method
would begin from a different θ when making its second
step and so the quality of θ2 conflates the quality of two
different updates; a method could appear superior over the
entire learning process if it produces a better first update but
is equivalent thereafter. We therefore compute a set of poli-
cies from which each gradient method is run, and we report
the performance of the policies that result from using each
gradient method for one step. Notice that this tests whether
the energetic natural gradient is a better update direction—
we do not propose or evaluate a specific algorithm for esti-
mating the energetic natural policy gradient efficiently for
learning.

We selected a variant of the canonical mountain car do-
main (Thomas, 2015, Section 4.10.2). Each gradient di-
rection was computed by fixing the agent’s policy, gener-
ating 20,000 trajectories, and then computing the gradient
using REINFORCE, the sample FIM, and the sample EIM.
The performance under an optimal policy is zero. Figure
4 shows, on the horizontal axis, the different initial poli-
cies from which we execute the different gradient updates;
each initial policy was obtained by interpolating between a
completely random policy and a policy with intermediate
performance. Each point in the x-axis is annotated with the
performance of the corresponding initial policy. We plot
the performance of the policy produced by a single step of
each gradient method.

When computing the energetic natural gradient, we fol-
lowed the approach taken by Kakade (2002): we treated
the policy as a set of distributions—one per state. We then
defined the EIM for each state and took the average per-
state EIM as our final EIM. We defined the distance metric,
d, as the difference between the q-values of two actions at a
given state; that is, ds(a1, a2) = |q(s, a1)−q(s, a2)|. Each
point in Figure 4 corresponds to the performance achieved
after one update step, averaged over 20 trials and including
standard error bars.

From Figure 4 we can see that the energetic natural gra-
dient consistently provides better update directions when
evaluated over a wide range of initial policies. In particular,

it results in policy performance that is consistently higher
than that achieved via the Fisher natural gradient—around
30% higher if applied to a random policy (leftmost point
in Figure 4). As the initial policy’s performance increases,
the gap between energetic natural gradient and Fisher natu-
ral gradient decreases, indicating that when we approach a
near-optimal solution, there are fewer ways in which it can
be significantly improved. However, note that even when
this is the case, following the energetic natural gradient still
results in consistently higher performance following a pol-
icy update. The curve depicting the performance result-
ing from following the ordinary gradient does not appear
in Figure 4 because it never increased past performance−5
when evaluated over the range of possible initial policies.

9. Conclusion
In this paper we introduced a new variant of gradient de-
scent that we call energetic natural gradient descent. The
energetic natural gradient is a new member of the family of
natural gradient algorithms (Amari, 1998) that leverages
more prior knowledge than the most common natural gra-
dient algorithms, which use the Fisher information matrix.
Specifically, the natural gradient using the Fisher informa-
tion matrix leverages prior knowledge about how a para-
metric model is parametrized to improve data efficiency
relative to ordinary gradient descent. However, it does not
leverage any knowledge of what the parametric model is
a distribution over. By contrast, the energetic natural gra-
dient leverages both information about how the parametric
model was parametrized and what the model is a distribu-
tion over.

We show that energetic gradient descent has many desir-
able theoretical properties: 1) under common conditions,
it is always a descent direction, 2) natural gradients using
the Fisher information matrix are a special case of our new
more general approach, and 3) the energetic natural gra-
dient is a covariant update direction—it is not sensitive to
how the parametric model was parametrized. Finally, we
presented an empirical example where the straightforward
application of energetic natural gradients to the problem of
policy search in reinforcement learning produces better up-
date directions than the natural gradient using the Fisher
information matrix and the ordinary gradient.

Several avenues of future work remain. We have presented
a generally applicable optimization algorithm; it remains
for this algorithm to be adapted to individual applications.
For example, there is a particularly efficient linear-time
method for approximating the Fisher natural gradient for
policy search in reinforcement learning (Bhatnagar et al.,
2009)—does a similarly efficient approximation exist for
the energetic natural gradient? Do other definitions of d
produce better results for reinforcement learning?
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A. Derivation of FIM from KLD
In this appendix we show that 1

2∆ᵀF (θ)∆ is a second or-
der Taylor approximation of DKL(p(θ)‖p(θ + ∆)). First,
let

gq(θ) :=DKL(q‖p(θ))

=
∑
ω∈Ω

q(ω) ln

(
q(ω)

p(ω|θ)

)
.

We begin by deriving equations for the Jacobian and Hes-
sian of gq at θ:

∂gq(θ)

∂θ
=
∑
ω∈Ω

q(ω)
p(ω|θ)

q(ω)

∂

∂θ

(
q(ω)

p(ω|θ)

)

=
∑
ω∈Ω

q(ω)
p(ω|θ)

q(ω)

(
−q(ω)∂p(ω|θ)

∂θ

p(ω|θ)2

)

=
∑
ω∈Ω

− q(ω)

p(ω|θ)

∂p(ω|θ)

∂θ
, (4)

and so:

∂2gq(θ)

∂θ2 =
∂

∂θ

(
∂gq(θ)

∂θ

)
=−

∑
ω∈Ω

q(ω)
∂

∂θ

(
1

p(ω|θ)

∂p(ω|θ)

∂θ

)
=−

∑
ω∈Ω

q(ω)

p(ω|θ)

∂2p(ω|θ)

∂θ2

+
∑
ω∈Ω

q(ω)

p(ω|θ)2

∂p(ω|θ)

∂θ

∂p(ω|θ)

∂θ

ᵀ

=−
∑
ω∈Ω

q(ω)

p(ω|θ)

∂2p(ω|θ)

∂θ2

+
∑
ω∈Ω

q(ω)
∂ ln p(ω|θ)

∂θ

∂ ln p(ω|θ)

∂θ

ᵀ

. (5)

Next we compute a second order Taylor expansion of
gq(θ + ∆) around gq(θ):

gp(θ)(θ + ∆)
Taylor2≈ gp(θ)(θ) + ∆ᵀ ∂gp(θ)(θ)

∂θ
(6)

+
1

2
∆ᵀ ∂

2gp(θ)(θ)

∂θ2 ∆.

Notice that

gp(θ)(θ) = DKL(p(θ)‖p(θ)) = 0,

and by (4)

∆ᵀ ∂gp(θ)(θ)

∂θ
=−∆ᵀ

∑
ω∈Ω

p(ω|θ)

p(ω|θ)

∂p(ω|θ)

∂θ

=−∆ᵀ ∂

∂θ

(∑
ω∈Ω

p(ω|θ)

)
(a)
=0,

where (a) holds because∑
ω∈Ω

p(ω|θ) = 1,

so
∂

∂θ

(∑
ω∈Ω

p(ω|θ)

)
=
∂1

∂θ
= 0. (7)

Thus, the first two terms on the right side of (6) are zero,
and thus:

gp(θ)(θ + ∆)
Taylor2≈ 1

2
∆ᵀ ∂

2gp(θ)(θ)

∂θ2 ∆. (8)

Next we focus on the Hessian, (5), with q = p(θ):

∂2gp(θ)(θ)

∂θ2 =−
∑
ω∈Ω

p(ω|θ)

p(ω|θ)

∂2p(ω|θ)

∂θ2︸ ︷︷ ︸
(a)
=0

+
∑
ω∈Ω

p(ω|θ)
∂ ln p(ω|θ)

∂θ

∂ ln p(ω|θ)

∂θ

ᵀ

=F (θ),

where (a) comes from taking the derivative of both sides of
(7) with respect to θ. Substituting this into (8) we have that

gp(θ)(θ + ∆)
Taylor2≈ 1

2
∆ᵀF (θ)∆.

B. Derivation of EIM from Energy Distance
In this section we show that ∆ᵀE(θ)∆ is a second order
Taylor approximation of DE(p(θ), p(θ + ∆))2. First, let

gq(θ) :=DE(q, p(θ))

=2
∑

ω1∈Ω,ω2∈Ω

q(ω1)p(ω2|θ)dq(ω1, ω2)

−
∑

ω1∈Ω,ω2∈Ω

p(ω1|θ)p(ω2|θ)dq(ω1, ω2)

−
∑

ω1∈Ω,ω2∈Ω

q(ω1)q(ω2)dq(ω1, ω2),
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where we use dq to denote that d should be the distance
metric at the distribution q. We begin by deriving an ex-
pression for the Jacobian of gq at θ:

∂gq(θ)

∂θ
=
∂

∂θ

(
2

∑
ω1∈Ω,ω2∈Ω

q(ω1)p(ω2|θ)dq(ω1, ω2)

−
∑

ω1∈Ω,ω2∈Ω

p(ω1|θ)p(ω2|θ)dq(ω1, ω2)

−
∑

ω1∈Ω,ω2∈Ω

q(ω1)q(ω2)dq(ω1, ω2)

)

=2
∑

ω1∈Ω,ω2∈Ω

dq(ω1, ω2)q(ω1)
∂p(ω2|θ)

∂θ

−
∑

ω1∈Ω,ω2∈Ω

dq(ω1, ω2)
∂p(ω1|θ)p(ω2|θ)

∂θ

=2
∑

ω1∈Ω,ω2∈Ω

dq(ω1, ω2)q(ω1)
∂p(ω2|θ)

∂θ

−
∑

ω1∈Ω,ω2∈Ω

dq(ω1, ω2)p(ω1|θ)
∂p(ω2|θ)

∂θ

−
∑

ω1∈Ω,ω2∈Ω

dq(ω1, ω2)p(ω2|θ)
∂p(ω1|θ)

∂θ
.

Notice that the last two lines are equal because dq is
symmetric—swap ω1 and ω2 in the last line, and you get
the second to last line with dq(ω2, ω1) = dq(ω1, ω2). So:

∂gq(θ)

∂θ
=2

∑
ω1∈Ω,ω2∈Ω

dq(ω1, ω2)q(ω1)
∂p(ω2|θ)

∂θ

− 2
∑

ω1∈Ω,ω2∈Ω

dq(ω1, ω2)p(ω1|θ)
∂p(ω2|θ)

∂θ

=2
∑

ω1∈Ω,ω2∈Ω

dq(ω1, ω2)
∂p(ω2|θ)

∂θ
(q(ω1)− p(ω1|θ)).

(9)

Next we compute the Hessian of gq at θ:

∂2gq(θ)

∂θ2 =
∂

∂θ

(
∂gq(θ)

∂θ

)
=

∂

∂θ

(
2

∑
ω1∈Ω,ω2∈Ω

dq(ω1, ω2)
∂p(ω2|θ)

∂θ
q(ω1)

)

∂

∂θ

(
− 2

∑
ω1∈Ω,ω2∈Ω

dq(ω1, ω2)
∂p(ω2|θ)

∂θ
p(ω1|θ)

)

=2
∑

ω1∈Ω,ω2∈Ω

dq(ω1, ω2)q(ω1)
∂2p(ω2|θ)

∂θ2

− 2
∑

ω1∈Ω,ω2∈Ω

dq(ω1, ω2)
∂

∂θ

(
∂p(ω2|θ)

∂θ
p(ω1|θ)

)

=2
∑

ω1∈Ω,ω2∈Ω

dq(ω1, ω2)q(ω1)
∂2p(ω2|θ)

∂θ2

− 2
∑

ω1∈Ω,ω2∈Ω

dq(ω1, ω2)
∂p(ω2|θ)

∂θ

∂p(ω1|θ)ᵀ

∂θ

− 2
∑

ω1∈Ω,ω2∈Ω

dq(ω1, ω2)p(ω1|θ)
∂2p(ω2|θ)

∂2θ)

=2
∑

ω1∈Ω,ω2∈Ω

dq(ω1, ω2)(q(ω1)− p(ω1|θ))
∂2p(ω2|θ)

∂θ2

− 2
∑

ω1∈Ω,ω2∈Ω

dp(θ)(ω1, ω2)
∂p(ω1|θ)

∂θ

∂p(ω2|θ)ᵀ

∂θ
.

(10)

Next we compute a second order Taylor expansion of
gq(θ + ∆) around gq(θ):

gp(θ)(θ + ∆)
Taylor2≈ gp(θ)(θ) + ∆ᵀ ∂gp(θ)(θ)

∂θ

+
1

2
∆ᵀ ∂

2gp(θ)(θ)

∂θ2 ∆. (11)

Notice that

gp(θ)(θ) = DE(p(θ), p(θ)) = 0,

and by (9)

∆ᵀ ∂gp(θ)(θ)

∂θ
=−∆ᵀ2

∑
ω1∈Ω,ω2∈Ω

dp(θ)(ω1, ω2)
∂p(ω2|θ)

∂θ

× (p(ω1|θ)− p(ω1|θ))

=0.

The first two terms on the right side of (11) are zero, and
thus:

gp(θ)(θ + ∆)
Taylor2≈ 1

2
∆ᵀ ∂

2gp(θ)(θ)

∂θ2 ∆. (12)
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Next we focus on the Hessian, (10), with q = p(θ):

∂2gp(θ)(θ)

∂θ2 =2
∑

ω1∈Ω,ω2∈Ω

dp(θ)(ω1, ω2) (p(ω1|θ)− p(ω1|θ))︸ ︷︷ ︸
=0

∂2p(ω2|θ)
∂θ2

− 2
∑

ω1∈Ω,ω2∈Ω

dp(θ)(ω1, ω2)
∂p(ω1|θ)

∂θ

∂p(ω2|θ)ᵀ

∂θ

=2E(θ).

Substituting this into (12) we have that

gp(θ)(θ + ∆)
Taylor2≈ ∆ᵀE(θ)∆.

C. Proof of Theorem 1

Let |Ω| = m, and let D be a m×m distance matrix where
Dij := dp(θ)(ωi, ωj). Let M be an m × n matrix where
the ith row is ∂p(ωi|θ)

∂θ . The EIM can then be written as:

E(θ) = −MᵀDM.

Recall from (7) that
∑m

i=1
∂p(ωi|θ)

∂θ = 0. This means that
each column of M must sum to zero, and thus that for
any x ∈ Rn, Mx is a vector whose entries also sum to
0. Hence, if D is conditionally negative definite then E(θ)
is negative semidefinite since

xᵀE(θ)x = −xᵀMᵀDMx
(a)
≥ 0,

for all x, where (a) holds from the definition of condition-
ally positive semidefinite matrices.

D. Discussion of CND Distances
Conditionally negative definite distances are related to Eu-
clidean distances, as shown by Schoenberg (1938).

Corollary 1. Assume |Ω| < ∞ and
√
dp(θ) is a metric

and Euclidean embeddable, that is, there exists a mapping
φ from Ω to a Euclidean space with distance d′ so that√
dp(θ)(ω1, ω2) = d′(φ(ω1), φ(ω2)). Then E(θ) is posi-

tive semidefinite. For |Ω| ≤ 4, every distance is Euclidean
embeddable, therefore

√
dp(θ) being a metric is sufficient

in this case.

The corollary follows directly from Theorem 1 and the
work by Schoenberg (1938) and Rao (1984).

We now provide an example of a distance metric d that is
not conditionally negative definite. We define a distance d
over the set Ω = {1, 2, 3, 4, 5} by the number of edges in
the shortest path between two nodes in the graph depicted
in Figure 5. For example, the distance between 1 and 5 is

1 3

2

4

5

Figure 5: The distance defined by the length of the short-
est path between two nodes is not conditionally negative
definite.

d(1, 5) = 2, while d(1, 2) = 1 and d(1, 1) = 0. One can
easily verify by enumeration that d is actually a distance: it
satisfies d(w1, w2) ≥ 0, and d(w1, w2) = 0 ⇔ w1 = w2,
and the triangle inequality. The distance matrix, D, of d is

D =


0 1 1 1 2
1 0 2 2 1
1 2 0 2 1
1 2 2 0 1
2 1 1 1 0

 .
The vector

x =


−3
2
2
2
−3


satisfies

∑5
i=1 xi = 0 and gives xᵀDx = 12. Hence, d is

not conditionally negative semidefinite.

E. Proof of Theorem 2

We have

E(θ) =−
∑

ω1∈Ω,ω2∈Ω

dp(θ)(ω1, ω2)
∂p(ω1|θ)

∂θ

∂p(ω2|θ)
∂θ

ᵀ

=−
∑

ω1∈Ω,ω2∈Ω

(
1(ω1 6=ω2)

2p(ω1|θ)
+

1(ω1 6=ω2)

2p(ω2|θ)

)
∂p(ω1|θ)

∂θ

∂p(ω2|θ)
∂θ

ᵀ

=−
∑
ω1∈Ω

1

2p(ω1|θ)
∂p(ω1|θ)

∂θ

∑
ω2 6=ω1

∂p(ω1|θ)
∂θ

ᵀ

−
∑
ω2∈Ω

1

2p(ω2|θ)

 ∑
ω1 6=ω2

∂p(ω1|θ)
∂θ

 ∂p(ω2|θ)
∂θ

ᵀ

.

By (7) we have that:∑
i 6=j

∂p(i|θ)

∂θ
= −∂p(j|θ)

∂θ
,
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and so

E(θ) =
∑
ω1∈Ω

1

2p(ω1|θ)

∂p(ω1|θ)

∂θ

∂p(ω1|θ)

∂θ

ᵀ

+
∑
ω2∈Ω

1

2p(ω2|θ)

∂p(ω2|θ)

∂θ

∂p(ω2|θ)

∂θ

ᵀ

=
∑
ω∈Ω

1

p(ω|θ)

∂p(ω|θ)

∂θ

∂p(ω|θ)

∂θ

ᵀ

=
∑
ω∈Ω

p(ω|θ)
∂ ln p(ω|θ)

∂θ

∂ ln p(ω|θ)

∂θ

ᵀ

=F (θ).

F. Proof of Theorem 3

Here we present a formal definition of what it means for
an update direction to be covariant before proving Theo-
rem 3, which states that the energetic natural gradient is a
covariant update direction. Intuitively, an update is covari-
ant if the direction of an update in the space of probability
distributions does not depend on the parametrization of the
space of probability distributions. We provide a (possibly
unintuitive) formal definition below, which comes from the
work of Dabney & Thomas (2014, Lemma 1).

Definition 1 (Congruency of PPMs). We say that two
PPMs, p with parameters θ ∈ Rn and q with parameters
φ ∈ Rn, are congruent if there exists a continuous func-
tion Φ : Rn → Rn such that for all θ:

p(θ) = q(Φ(θ)),

and the Jacobian of Φ is full rank.

Definition 2 (Covariant Update). The update direction ∇̃
is covariant if, for all congruent PPMs, p and q, and all
θ ∈ Rn:

∇̃(f ◦ q)(Φ(θ)) =
∂Φ(θ)

∂θ
∇̃(f ◦ p)(θ). (13)

We now prove that the Energetic natural gradient is a co-
variant update direction. Our proof is similar to that of
Dabney & Thomas (2014), who show that a broad class of
natural gradient algorithms (not including the energetic nat-
ural gradient) are covariant. First notice that by the chain
rule:

∂ ln q(ω|Φ(θ))

∂θ
=
∂Φ(θ)

∂θ

∂ ln q(ω|Φ(θ))

∂Φ(θ)
,

and so, since the Jacobian of Φ(θ) is full rank:

∂Φ(θ)

∂θ

−1
∂ ln q(ω|Φ(θ))

∂θ
=
∂ ln q(ω|Φ(θ))

∂Φ(θ)
. (14)

Now consider E(Φ(θ)), where we write φ as shorthand for
Φ(θ). Below, ... denotes that a long line was split onto two
lines.

E(φ)

=−Eω1∼q(φ)
ω2∼q(φ)

[
dq(φ)(ω1, ω2)

∂ ln q(ω1|φ)
∂φ

∂ ln q(ω2|φ)
∂φ

ᵀ]

(a)
=−Eω1∼q(φ)

ω2∼q(φ)

[
dq(φ)(ω1, ω2)

∂φ

∂θ

−1 ∂ ln q(ω1|φ)
∂θ

...
∂ ln q(ω2|φ)

∂θ

ᵀ(∂φ

∂θ

−1
)ᵀ
]

=− ∂φ

∂θ

−1

Eω1∼q(φ)
ω2∼q(φ)

[
dq(φ)(ω1, ω2)

∂ ln q(ω1|φ)
∂θ

...
∂ ln q(ω2|φ)

∂θ

ᵀ
](

∂φ

∂θ

−1
)ᵀ

,

where (a) comes from (14). Since q(φ) = p(θ) we have
that:

E(φ)

= −
∂φ

∂θ

−1

Eω1∼p(θ)
ω2∼p(θ)

[
dp(θ)(ω1, ω2)

∂ ln p(ω1|θ)

∂θ

∂ ln p(ω2|θ)

∂θ

ᵀ]( ∂φ

∂θ

−1
)ᵀ

=
∂φ

∂θ

−1

E(θ)

(
∂φ

∂θ

−1
)ᵀ

.

So, we have that the left side of (13) is:

E(φ)+ ∂(f ◦ q)(φ)
∂φ

=

[
∂φ

∂θ

−1

E(θ)
(
∂φ

∂θ

−1
)ᵀ]+

∂(f ◦ q)(φ)
∂φ

.

(15)

We can use the chain rule as before to show that

∂(f ◦ q)(φ)

∂φ
=
∂φ

∂θ

−1 ∂(f ◦ q)(φ)

∂θ
,

and so continuing (15) we have that

E(φ)
+ ∂(f ◦ q)(φ)

∂φ
=

[
∂φ

∂θ

−1

E(θ)

(
∂φ

∂θ

−1)ᵀ]+ ∂φ

∂θ

−1 ∂(f ◦ q)(φ)

∂θ

(a)
=

∂φ

∂θ
E(θ)

+ ∂φ

∂θ

∂φ

∂θ

−1 ∂(f ◦ q)(φ)

∂θ

=
∂φ

∂θ
E(θ)

+ ∂(f ◦ q)(φ)

∂θ

=
∂φ

∂θ
∇̃(f ◦ p)(θ),

where (a) comes from the assumption that ∂φ/∂θ has full
rank, and so [∂φ∂θ

−1
A]+ = A+ ∂φ

∂θ for any matrix A. We
therefore have that (13) holds for the energetic natural gra-
dient.


